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SUMMARY 

Liquid-solid chromatography (LSC) with mixed mobile phases is discussed in 
terms of classical thermodynamics. It is shown that a rigorous consideration of solute 
and solvent competitive adsorption in systems with a non-ideal mobile (bulk) phase 
and a surface-influenced non-ideal stationary phase leads to a new general equation 
for the distribution coefficient of a solute involving concurrent adsorption and par- 
tition effects. For special sets of parameters this equation reduces to familiar limiting 
expressions describing either adsorption or partition effects. A detailed discussion is 
presented for LSC systems with binary phases, in which bulk and surface solutions 
are assumed to be regular ones. 

INTRODUCTION 

Two limiting models are usually employed to describe the experimental data 
of liquid-solid chromatography (LSC) with mixed mobile phases. One of them, 
widely known in the chromatographic literature as the displacement model, was pro- 
posed in the 1960’s by Snyder’. According to this model a solute is distributed be- 
tween a surface phase, usually assumed to be monolayer, and a mobile phase as a 
result of a competitive solute and solvent adsorption. In adsorption from solutions 
on solids and similarly in LSC with mixed mobile phases this competitive adsorption 

l is represented by suitable phase-exchange reactions - 7. Experimental and theoretical 
studies of many authors have shown that solute and solvent competitive adsorption 
plays an important role in the process of solute distribution between the two phases, 
especially in LSC systems in the normal-phase mode4-lo. There is a great number of 
theoretical papers starting with the original displacement model and incorporating 
additional details such as surface heterogeneity”*12, non-specific interactions in both 
phases13-15, solvation and solvent association in both phases16-1s and other fac- 
tors19*20. 

* Permanent address: Institute of Chemistry, M. Curie-Sklodowska University, 20031 Lublin, Po- 
land. 
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The second limiting model of the LSC process is that assuming distribution of 
a solute between two phases as a consequence of classical partitioning* 1-24. Equations 
describing partitioning of a solute between a surface-influenced stationary phase and 
mobile phase are quite analogous to those used in gas-liquid and liquid-liquid chro- 
matography. Oscik2 5 was the first to derive an equation for LSC with mixed mobile 
phases, which, as our recent studies have shownz6J7, reflects partition effects in the 
chromatographic process. These effects are dominant in the typical reversed-phase 
chromatographic systems with chemically bonded phases2 lPz3. If the models involving 
classical partitioning give a good representation of the LSC process in many of the 
systems in question, there is a great number of systems, in which adsorption and 
partition phenomena give comparable contributions to the total solute retention. In 
contrast to the simple approaches describing the above-mentioned limiting 
models6s7s2 ~J~J’, there is no simple model involving concurrent adsorption and par- 
tition effects. Although the unified stastistico-thermodynamical description of LSC 
with mixed mobile phases due to Martire and Boehnz4J8J9 automatically incorpo- 
rates the competitive character of solute and solvent adsorption and all contributions 
from solution nonideality, the final expressions resulting from this description are 
quite complicated and frequently inconvenient for practical applications. Therefore, 
in this paper a simple model involving concurrent adsorption and partition effects is 
proposed and formulated in terms of classical thermodynamics. This formulation 
makes possible a clear and rigorous definition of adsorption and partition phenom- 
ena in LSC with mixed mobile phases and leads to a new general equation describing 
dependence of the distribution coefficient of a solute upon mobile phase composition. 
All familiar limiting equations, having rigorous thermodynamical foundations, may 
be deduced from this general expression. 

ADSORPTION FROM MULTICOMPONENT SOLUTIONS ON SOLID SURFACES 

This section is devoted to adsorption from multicomponent liquid mixtures on 
solid surfaces, which is a natural basis to formulate a theory of LSC with mixed 
mobile phases. Let us consider a (n + 1)-component liquid mixture contacting with 
a homogeneous solid surface. The liquid mixture contains only nonelectrolytes and 
its deviation from ideality is described in terms of the activity coefficients. In general, 
a (n + 1)-component solution contains molecules of different sizes; this means that 
a molecule of the i-th component contains ri segments. The adsorption occurs as a 
consequence of an exchange of the different molecules between two phases, bulk 
phase and surface phase. The latter phase is assumed to be an autonomous phase, 
in which molecules lie parallel to the solid surface. The adsorption process may be 
represented by a series of the following phase-exchange reactions3: 

Ti (n+ 1)’ + r,+l (2)” P ri (n+ 1)” + r.+l (i)’ for i = 1,2,. . .,II (1) 

where (i)” denotes a molecule of the i-th component in the p-th phase and p = 1 
(bulk phase) and IJ (surface phase). Although the phase-exchange reaction given by 
eqn. 1 suggests a monolayer character of adsorption, the recent statistico-thermo- 
dynamical studies of Dabrowski et al. 3o showed that the above reaction may be used 
to represent the adsorption process for surface phases of greater thickness than the 
monolayer thickness but showing a special ordering of adsorbed molecules. 
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The equilibrium constant K”+ r,i relating to the reaction given by eqn. 1 is 
defined as follows: 

r n+r,i = (U::+l/Ufi+l)‘i(Uf/ap)‘n+l for i = 1,2,. . .,n (2) 

where 

K*,+l,i = k+l,i eXP[(rih+l - rn+~=%)/(h3T)] for i = 1,2,. . 4 (3) 

In the above, a? is the activity of the i-th component in the p-th phase, si is the 
adsorption energy of the i-th component and a “+r,i is the factor connected with 
partition functions of isolated molecules of the i-th and (n + I)-th components in both 
phases3. The activity a$’ is defined in a standard way, i.e., 

uf = (~$4 for i = 1,2,. . .,n + 1 and p = 1, (T (4) 

where (~4 and y? denote the volume fraction and activity coefficient of the i-th com- 
ponent in the p-th phase, respectively, where rf + 1 as (pf + 1. According to the 
theory of regular solutions the activity coefficient yf is expressed as follows: . 

PI+1 PI+1 n+1 

In YP = 1 (1 -ri/rj)@ + ri 2 X$&(1 - @) - ri C &J$& (5) 
j=l j=l j.k= 1 

j#i j,k+i 

k>j 

for i = 1,2,. . .,n+ 1 and p = I, CT. In the above, the interaction parameter xP,. is 
defined by the following equation: 

X4j = [ZP/(kaT)] [O$ - O.S(OP, + Wfj)] (6) 

for ij = 1,2,. ..,n+ l,i#j,p=I,aand&==$ 

The symbol 06 denotes the interaction energy between two segments of the i-th and 
j-th molecules in the p-th phase, zP is the lattice coordination number in the p-th 
phase. Distinguishing the parameters Wij and 05, we assume that the interaction 
energies in the surface solution are perturbed by the potential field of the adsorbent 
and as a consequence of this, they differ from those in the bulk solution. 

Eqns. 2,4 and 5 make possible calculation of the volume fractions of all com- 
ponents in the surface phase for a given composition of the bulk phase. In other 
words, these equations describe adsorption from (n + 1)-component regular solu- 
tions on a homogeneous solid surface in the whole concentration region. 

The equilibrium constant K’,+ l,i may be rewritten in a slightly different form: 

K n+l,i = (K*,+l,i)l”i = (C1,+l,i)l”iexP[(&.+l - r,+~.+i)/(hT)] (7) 
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for i = 1,2,. . .,n. Then, eqn. 2 becomes 

K n+l,i = [(cp~+~y~+~)/(cPfi+~Yfi+~)l[((Pf~f)/(cPP~~)l’~+~“~ for i = 12,. . . ,n (8) 

Eqn. 8 is more convenient to formulate equations describing LX with mixed mobile 
phases. 

FUNDAMENTAL EQUATIONS DESCRIBING LSC WITH MIXED MOBILE PHASES 

Let us consider an adsorption system described by eqns. 5 and 8 but at infi- 
nitely low concentration of the (n + 1)-th component (solute), i.e., 

cpf + 0 for s = n + 1 and p = 1, (r. (9) 

The subscript “s” denotes the (n + 1)-th component at infinitely low concentration 
in the mobile (bulk) phase, and then its concentration in the surface phase is also 
infinitely low. The volume fractions of the remaining components (solvents) 1,2,. . .,n 
fulfill the following condition: 

n 

pP4=1 for p = I, f7 (10) 
i=l 

The components 1,2,. . .,n are treated as the solvents. The expression defining the 
activity coefficient of the s-th solute in the p-th phase may be obtained from eqn. 5 
replacing in it the volume fraction cp{+ 1 = &’ by zero; finally we have 

In jY = E (1 - rs/ri)& + 
n n 

rS 1 x4, V? - rS 1 #+$(pjp for p = I, 0 (11) 
i=l i=l i,j= 1 

where 
j>i 

7: = lim 7: for p = I, 0 (12) 

cp!-+O 

It is convenient to express the activity coefficient j%’ by means of the activity coeffi- 
cients y$ij for i = 1,2,. . .,n. The symbol @iJ denotes the activity coefficient of the 
s-th solute in the i-th pure solvent, i.e., 

jr$,;ij = lim y$ = lim y$ for i = 1,2,. . .,n and p = 1, (T (13) 

cp?+1 cpP+l 
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Eqn. 11 gives the following expression for In y”$ij : 

In y$ij = (1 - rs/ri) + rS & for i = 1,2,. . .J and p = 1, e 

5 

(14) 

Combination of eqns. 11 and 14 gives 

In 7: = for p = 1, cr (1% 

i=l i,j= 1 

j>i 

The activity coefficients 74 for i = 1,2,. . .,n at rp! + 0 are expressed as follows: 

In $jf = lim In r4 = i (1 - ri/rj)& + Ti i x$J$(l - (pf) - ri i &Cp~& 
d-0 j=l j=l j,k= 1 

j,k f i 

k>j 
(16) 

for i = 1,2,. . .,n and p = I, 0. For&’ + 1 eqn. 16 gives 

lim yf = lim j$ = 1 for p = I, 0 

@+I CpP-tl 
(17) 

The distribution coefficients of the s-th solute in a n-component eluent and the i-th 
pure solvent are defined as follows: 

ks(i) = lim (@/f& for i = 1,2,. . .,n 
&I 

(19) 

Taking into account eqns. 18, 19 in eqn. 8 we obtain 

In k, = In Ksi + (rs/ri)ln[(col~P)/(cP’iPt)3 + ~n(~~/~~) (20) 

In k,(i) = In Ksi + ln(&s/y;i,) for i = 1,2,. . .,n and s = n+ 1 (21) 

Combining eqns. 14, 15, 16 and 20 we obtain the general expression defining the 
dependence of In k, upon mobile phase composition: 

In k, = In Ksi + (r,/ri)h(@‘/cpf) + rs 1 (x$S - &)c~f + 
j=l 

n-1 
+ rs C (XL - xj”s) (Cpi - rp$) -rs i X$icPf + rs i &Pi” 

j=l j=l j=l 

j+i j#i 

(22) 
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This expression may be rewritten in terms of the distribution coefficients of the s-th 
solute in the pure solvents forming the mixed eluent. For this purpose we express the 
term ln(yi/fs”) appearing in eqn. 20 by means of In k,(i) for i = 1,2,. . .,n; it is 

j=l j=l j=l 

j,k = 1 j,k = 1 

kzj kzj 

Substitution of eqns. 23 and 16 into eqn. 20 gives the general expression for the 
distribution coefficient of the s-th solute in term the distribution coefficients of this 
solute in the pure solvents; it is 

n n 

In k, = 1 (r,/rJ qf In Kji + (r&i) ln (&‘/~f) + C ‘of ln k,(j) + 
j=l j=l 

j#i 

j=l j=l j=l 

j# i j#i 

where Kii = 1 and xfi = x4j. At this point it is worth noting that eqns. 22 and 24 
defining the distribution coefficient of the s-th solute in a n-component eluent are 
equivalent; the first of them is written in terms of the molecular parameters charac- 
terizing regular bulk and surface solutions, whereas the second equation is written 
in terms of the distribution coefficients of the s-th solute in pure solvents forming the 
mixed eluent. These equations have been obtained from eqn. 20 by replacing the 
activity coefficients of the s-th solute and the i-th solvent in both phases by analytical 
expressions resulting from the model of regular solutions. Thus, eqn. 20 is a funda- 
mental relationship in LSC with mixed eluents. 

With special assumptions eqns. 20, 22 and 24 yield equations having rigorous 
thermodynamical foundations, which have been used up to date in LSC with mixed 
mobile phases. Before discussing this question we consider definitions of adsorption 
and partition phenomena in LSC. 

ADSORPTION AND PARTITION PHENOMENA IN LSC 

Let us return to eqn. 21 defining the distribution coefficient of the s-th solute 
in the i-th pure solvent. Rewriting this equation in a slightly different form we obtain: 
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A simple analysis of eqn. 25 shows that distribution of the s-th solute between sta- 
tionary (surface) and mobile (bulk) phases consisting of the i-th pure solvent is de- 
termined by two terms: Ksi (equilibrium constant describing phase-exchange of solute 
and solvent molecules) and (‘y~ci,/$~i~) (ratio of the activity coefficients of the s-th 
solute in the bulk and surface phases). The equilibrium constant Ksi (eqn. 7) contains 
the pre-exponential entropy factor involving the difference in partition functions of 
isolated molecules of the s-th solute and i-th solvent in the bulk solution and surface 
layer, and an exponential factor containing the difference in adsorption energies of 
the s-th solute and i-th solvent. This exponential term gives the greatest contribution 
to the constant Ksi. For the same entropy factor, adsorption of the s-th solute in- 
creases with an increasing difference in adsorption energies of the s-th solute and i- 
th solvent. This difference of energies mainly determines the distribution of the s-th 
solute between the two one-component phases occuring as a result of the competitive 
solute and solvent adsorption process, which is represented by the phase-exchange 
reaction (eqn. 1). Such a mechanism of distribution of the s-th solute between one- 
component bulk and surface-influenced stationary phases has been described earlier 
in terms of the displacement modeli*4-g. 

The second factor determining the distribution of the s-th solute between sur- 
face and bulk phases consisting of the i-th pure solvent is the ratio of the activity 
coefficients $~i~/~~i~. This ratio is different from unity for xf, # &, i.e., when we 
assume different values of the interchange energies of the s-th solute in the i-th solvent 
forming the bulk and surface-influenced stationary phases. Thus, differences in the 
interchange energies characterizing solute-solvent interactions in surface and bulk 
dilute solutions (s,i) may also affect distribution to the s-th solute between the two 
phases. Such a mechanism of distribution of the s-th solute between the surface and 
mobile phases consisting of the i-th solvent is quite analogous to that appearing in 
gas-liquid and liquid-liquid chromatographic systems and has been already de- 
scribed in terms of the so-called partition mode124-27. 

The above discussion enables us to distinguish three main models of the LSC 
process. In the case of LSC with a one-component eluent, equations defining these 
models may be obtained on the basis of eqn. 25. They are: 

k,(i) = J&i = (%)“‘iexP[(G - ~sQl~i)/(kBT)l (26) 

with the condition 

for the displacement model (DM), and 

with the condition 

Ksi = 1 for i = 1,2,. . .,?I (29) 
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for the partition model (PM), and 
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Ksi # 1; &i)/?:(i) # 1 for i = 1,2,. . .J 

for the mixed model (MM). 

(30) 

Similar equations to eqns. 26-29 may be written for the displacement and 
partition models of LX with multicomponent eluents. In this case eqn. 20 gives: 

In k, = In Ksi + (r,/ri) In (cpf/cpf) 

with the condition 

(31) 

ln[(~f/~~)(3P/r”f)‘ri] = 0 for i = 1,2,. . .,n 

for the displacement model, and 

(32) 

In k, = In (7:/F:) 

with the condition 

(33) 

Kij = 1 for ij = 1,2,. . .,n,s (34) 

for the partition model. Eqns. 31 and 33 defining the distribution coefficient of the 
s-solute between two multicomponent phases by assuming displacement and partition 
models, respectively, are well known in th&chromatographic literature4-8~24-27. These 
equations have been obtained from eqn. 20 by assuming special conditions given by 
eqns. 32 and 34. Discussion of these conditions in terms of our treatment is both 
interesting and pertinent because it can reveal the physical limitations of the above 
models. 

Let us consider the condition given by eqn. 32. On the basis of eqns. 14-16 we 
can write: 

n-l 

(rs/ri)W4/% = C (rJrn - r,/rj) (Cp! - Cp;) + rs i, [X$((ps)’ - &((Pf)“] + 
j=l j=l 

+ rs i (xyi + xfi - )$k) @fd - 

n 

rs 1 <X$ + XL - Xfk)&d (35) 
j.k = 1 

j,k#i 

k>j 

and 

ln(GY) = - i @Jr, 
j=l 

n-1 

+ rs 1 (XL - x$) (~7 

j=l 

j,k = 1 

j,k#i 

k>j 

rs/rj) (cpq - q$) + rs i <xf~ - Xi) ‘Pi + 
j=l 

j,k = 1 j,k = 1 

k>j k>j 
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Comparing eqns. 35 and 36 according to the condition given by eqn. 32 we can see 
that terms containing (r,/r. - r,/rJ cancel out. Thus, eqn. 32 is fulfilled if the param- 
eters ~5 are equal zero, i.e., 

Xfj = 0 for ij = 1,2,. . .,n,s, i # j and p = I, r~ (37) 

Eqn. 37 defines LX systems with ideal surface and mobile phases. 
Now, we consider eqn. 33 describing dependence of In k, upon mobile phase 

composition according to the partition model of LSC with mixed eluents. This equa- 
tion is valid when eqn. 34 is fulfilled. The equilibrium constant Kij describing the 
phase-exchange reaction for molecules of the i-th and j-th components contained in 
an infinitely dilute solution with respect to the s-th solute, may be expressed as fol- 
lows: 

Kij = [(cp~yp)/(rpfY’i)][(cPflf)/(cPS~~)l’i/’i for ij = 1,2,. . .,n,s (38) 

Since, for the partition model (eqn. 34) the constants Kil = 1 for ij = 1,2,. . .,n, (no 
displacement process between solute and solvent molecules), eqn. 38 gives 

(cp$P)/(cpf$) = [(Cp$j”)/(rp$j))I’i/‘j for ij = 1,2,. . .,n,s (39) 

For different values of ri eqn. 39 is fulfilled when31 

(cpPjQ/(cp$$ = 1 for i = 1,2,. . .,n,s (40) 

It is easy to see that eqn. 40 for i = s associated with the definition of k, (see eqn. 
18) gives eqn. 33. Moreover, eqn. 20 becomes eqn. 33 when Ksi = 1 and eqn. 40 is 
fulfilled. 

Eqns. 31, 32 and 33, 34 define the so-called pure displacement and partition 
models, respectively. The pure displacement model of LSC assumes identical inter- 
actions between solute and solvent molecules (see eqn. 37). Then distribution of solute 
and solvent molecules between two phases occurs only as a result of the competitive 
adsorption. However, the pure partition model of LSC assumes no competitive solute 
and solvent adsorption. In this case the distribution of a solute between the two 
phases is a result of differences in its activity coefficients in the mobile and surface- 
influenced stationary phases. Besides the above “pure” models of LSC, eqn. 20 can 
describe different mixed models involving concurrent adsorption and partition 
effects, e.g., models assuming competitive adsorption for solute and one solvent or 
only competitive solvent adsorption, etc. One of the main advantages of eqn. 20 is 
its general character; this equation coupled with the expressions defining solute and 
solvent activity coefficients (eqns. 15 and 16) can also generate the most popular 
equations derived up to date for displacement and partition models of LSC6,7J4Jg. 
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PURE DISPLACEMENT MODEL OF LSC 

Eqn. 37 defines the physical condition where only solute and solvent com- 
petitive adsorption determines the LSC process. Under this condition the dependence 
of the distribution coefficient of the s-th solute upon mobile phase composition is 
given by eqn. 31. This equation may be rewritten in a slightly different form: 

In k, = In k,(i) + vi In (@I& for vi = rs/ri and i = 1,2,. . .J (41) 

In many chromatographic models the eluent is assumed to be a mixture consisting 
of molecules of identical sizes, then rl = r2 = . . . = r, = r. Hence, the volume 
fractions of solvents are equivalent to the mole fractions. Taking this into account 
in eqn. 41, we have 

In k, = In k,(i) + v ln(xT/xf) for v = rs/r and i = 1,2,. . .,n (42) 

where x4 denotes the mole fraction of the i-th solvent in the p-th phase. Eqn. 42 has 
been derived by Jaroniec et al. l3 As xp + 1 this equation becomes the well-known . 
Snyder-Soczewinski relationship4v9: 

In k, = In k,(i) - v In xf (43) 

A similar relationship to that expressed by eqn. 43 may be obtained from eqn. 41 by 
assuming cpr + 1: 

In k, = In k,(i) - v In qf (44) 

Eqn. 44 may be used to describe chromatographic data measured for mixed eluents 
consisting of molecules of different molecular sizes. 

An interesting expression may be obtained from eqn. 42 by assuming Everett’s 
equation for xp (refs. 2 and 3): 

Kj.Xf 
> 

for i = 1,2,. . .,n 

Eqns. 45 and 42 give 

(45) 

(46) 

where 

Kjn = Ws(n)/kso~]l’Y forj = 1,2,. . .,n- 1 (47) 

Eqn. 46 has been recently obtained by Borowko 32. For r, = r (identical molecular 
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sizes of solute and solvent molecules) eqn. 46 becomes the well-known relation- 
ship . 28.29,33. 

k = [-jl (xhj,)]-l (48) 

Jaroniec et ~1.~~ showed that eqn. 48 is equivalent to Snyder’s fundamental relation- 
ship’ : 

n 

k, = 1 x; ksu, 
j=l 

(49) 

This problem was also discussed in terms of statistical thermodynamics2*~29~34. The 
equations considered in this section, referring to the pure displacement model, have 
been discussed in detail in two review@*‘. 

PURE PARTITION MODEL OF LSC 

Eqns. 33 and 34 defining the distribution coefficient of the s-th solute in terms 
of the pure partition model, combined with eqn. 23 give: 

In k, = i C/I: In k,(i) 

II-1 

+ 1 [(rh - r&J + r&L - &)]((P: - cpf) + 
i=l i=l 

n 

+ rs i X5(+$@ - rs 1 Xfj&f 

i,j= 1 i,j= 1 

j>i j>i 

(50) 

This equation has been recently derived by Martire and Jaroniecz7. Two important 
special cases may be deduced from this equation. The first case refers to chromato- 
graphic systems with nearly ideal eluents containing solvents strongly interacting with 
solute molecules. Under these assumptions eqn. 50 reduces to Oscik’s relation- 
ship6,2 5: 

n-l 
In k, = i qf In k,(i) + C (& - cpf) In K$in) 

i=l i=l 
(51) 

where 

In K;in) = @Jri - r,/r.> + rs (XL - x3 (52) 

For chromatographic systems showing ideal behaviour the term containing In K;in) 
becomes zero and then eqn. 51 reduces to the well-known relationship7*27 

In k, = i qf In k,(i) 
i=l 

(53) 
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Eqn. 53 is, besides the Snyder-Soczewinski eqn. 43, one of the most popular relation- 
ships used for describing LSC data. This equation represents the linear dependence 
of the logarithm of the distribution coefficient upon the volume fractions of solvents 
forming a mixed eluent. Eqn. 53 and other equations presented in this section describe 
distribution of the s-th solute between the bulk and surface-influenced stationary 
phases. In other words, these equations describe partition effects in LSC with mixed 
mobile phases. 

LSC WITH BINARY ELUENTS 

In this section we present a short discussion of equations describing LSC with 
binary eluents. A general equation for binary eluents may be obtained from eqn. 24 
for n = 2; it is 

In k = (rs/r2M In K21 + (rJrd In (4Wf4) + 44 In kcI, + cpi In ksC2) t 

+ rs(xbzs - XI,) (cpf - $I) + r, xf2& - rs xi244 (54) 

Eqn. 54 may be also obtained from eqn. 20, in which the subscript “2 is replaced by 
“1” and r$ and y4 (p = 1, a) are replaced by suitable equations defining activity 
coefficients of the s-th solute and 1-st solvent in an infinitely dilute regular solution 
(s,1,2) with respect to the s-th solute. It is difficult to obtain special cases of eqn. 54 
relating to the pure displacement and partition models because some terms appearing 
in the expressions In (j$/sZ) and In (Fpi.7: ) have cancelled out. However, these 
equations may be easily obtained from eqns. 46 and 50 when n = 2. In the case of 
the displacement model we have: 

k, = [x:&o,) l” + x:/( k,t2,)““j -” (55) 

The Snyder-Soczewinski relationship is valid for chromatographic systems with bi- 
nary eluents, which contain solvents showing a great difference in elution strengths, 
then ksf2) % kStl) where the subscript “1” denotes the more efficient eluting solvent6*7. 
Under this condition eqn. 55 becomes the Snyder-Soczewinski relationship: 

In k, = In kscl, - v In xi (56) 

In the case of the partition model, eqn. 50 for n = 2 gives an extended form of 
Oscik’s equationz7: 

Let us return to the general eqn. 54. It is interesting to consider this equation 
for ideal binary eluents (~7~ = xi2 = 0 and rl = r2 = r). If, in addition, the solute 
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molecules have comparable interactions with molecules of the 1-st and 2-nd solvents 
and they are not perturbed by the solid surface, then 

XL = XL = x4, = XL (58) 

Under these conditions eqn. 54 gives eqn. 55, which has been derived for the pure 
displacement model. This indicates that Oscik’s equation should contain terms re- 
ferring to solvent-solvent interactions in both phases because for systems with strong 
solvent-solvent interactions partition effects should be dominant and this enables us 
to neglect the effects connected with the displacement process. 

CONCLUDING REMARKS 

Eqn. 20 contains activity coefficients of the solute and a reference solvent. 
These activity coefficients may be expressed in an analytical form when we assume 
a definite molecular model for the bulk and surface solutions. This paper presents 
equations for the distribution coefficient by taking the model of regular solutions for 
the mobile and surface-influenced stationary phases, where the surface layer has been 
formed on an energetically homogeneous solid. This model is based on random mix- 
ing and, hence, involves primarily dispersive interactions between the molecules. 
However, according to Dubinin et al. 3s it is possible to express the total activity 
coefficient of the j-th component in the mobile and surface phases as follows: 

and 

-1 -I -1 yj = yj,dyj,s for j = 1,2,. . .,n,s (60) 

In the above, .i;$ and y& denote the activity coefficients of the j-th component in the 
p-th phase reflecting nonideality of the solution due to dispersive (d) and specific (s) 
interactions, whereas, yzhdenotes the activity coefficient of the j-th component in the 
surface phase reflecting nonideality of the surface solution due to adsorbent hetero- 
geneity (h). Expressing activity coefficients of the solute and solvent in eqn. 20 by 
expressions of the type eqn. 59 it should be possible to derive equations for LSC 
involving adsorbent heterogeneity and association effects. 

There is also the possibility of describing LC systems containing different num- 
bers of components in both phases, e.g., systems containing liquid components in the 
stationary phase, which are immiscible with the mobile phase and vice versa. Such 
a situation may appear in liquid-liquid chromatography with mixed phases and LC 
with chemically bonded phases. The activity coefficients for such systems may be 
expressed by eqn. 15, in which terms containing the volume fractions of components 
not appearing in the p-th phase are neglected. 

As an example we present equations for LC containing one component in the 
stationary phase immiscible with the binary mobile phase, e.g., LC with a homogen- 
eous chemically bonded phase. Then the activity coefficient 7: may be expressed as 
follows: 
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where cpF and &, denote the volume fraction of the c-th immiscible component in 
the stationary phase and the activity coefficient of the s-th solute in the c-th pure 
component, respectively. The activity coefficient g(C) in the c-th component bonded 
to the solid surface may be defined analogously to eqn. 14: 

In 3Z) = (1 - r,/r,) + r,xs”f + A,, (62) 

where A,, is a correction term. A simple correction of the form shown is strictly valid 
when the chemically bonded phase is “collapsed” or nearly so, implying little uptake 
of solvent components 1 and 2 by the stationary phase, i.e., cpi and cp; are sma11z4. 
In this collapsed-chain limit A,, depends only on the surface coverage and intrinsic 
flexibility of the chemically bonded chains, and on the nature of the solute. However, 
the activity coefficient 7: is given by eqn. 15 for n = 2. Combination of eqn. 33 
defining the distribution coefficient of the s-th solute for the partition model with 
eqn. 61 and eqn. 15 for n = 2 gives: 

where 

ln k,ci/r2,, = In (&ijTt) for i = 1,~ (64) 

The symbol ks(i,l zc) denotes a hypothetical distribution coefficient for the s-th solute 
between the i-th bulk solvent and surface-influenced stationary phase (1 + 2 + c) hav- 
ing an equilibrium composition. Let us consider a case when the solvents are excluded 
from the stationary phase; then the distribution coefficient k,(i/l2c) becomes a physi- 
cally attainable quantity and represents partition of the s-th solute between the i-th 
pure solvent and a stationary phase containing only a component immiscible with 
this solvent. Under this condition we have 

ks(i/l2c) = ks(i/c) for cp? = cp5 = 0 and i = 1,2 (65) 

and eqn. 63 becomes 

Eqn. 66 has been derived by Martire and Boehm 24 for LSC with chemically bonded 
phases in terms of statistical thermodynamics. This short derivation shows the great 
utility of the above description to derive equations involving adsorption and partition 
effects in liquid chromatographic systems with an arbitrary number of components 
in both phases. 

Therefore, it has been demonstrated that various well-known retention-solvent 
composition relationships can be readily derived from the basic general equation 
under certain simplifying assumptions. These familiar relationships have been applied 
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extensively to the interpretation of liquid chromatographic data. Their limitations 
and range of applicability are a matter of record. It is clear that none of these simple 
relationships is completely adequate. 

Indeed, as has also been recognized and studied by others36-39, retention be- 
havior in liquid chromatographic systems is generally complex, especially with mixed 
mobile phases, and usually cannot be fully described through a single, simple mech- 
anism. However, the problem of practical application of our general equation to a 
wide range of normal and reversed phase systems, although it is an important (and 
difficult) one, is beyond the scope of the present paper. It will be the subject of our 
future studies. 

The aim of the present paper was to develop a comprehensive theoretical 
framework for liquid-solid chromatography. The resulting general equation has been 
phrased in terms of interaction parameters and activity coefficients, which would 
need to be evaluated or estimated in actual applications. It should be noted that, as 
a starting point, approximate methods3 5*40 exist for treating these thermodynamic 
quantities. 

ADDED NOTE 

As should be evident from the equations and text in the section titled “Ad- 
sorption and Partition Phenomena in LSC”, by the term “partition” we refer to that 
contribution arising from the distribution of solute between a surface-influenced (sta- 
tionary) liquid layer and a bulk-liquid mobile phase. Even though this effect is similar 
to liquid-liquid equilibria, we regarded such alternative terms as “solvation”, “so- 
lution” or “liquid-liquid partition” to be misleading because the stationary layer is 
by no means a bulk liquid. 

However, the Editor has pointed out that, strictly, the term “partition” has a 
broader connotation and should not be solely reserved to describe liquid-liquid equi- 
libria (or, by extension, a process akin to it), despite its common usage in that 
regard. This point is well taken. We do not wish it to be inferred that we support or 
encourage propagation of this historical distortion. Simply, given the nature of the 
stationary layer and the role of the underlying solid surface in determining its exist- 
ence and composition, the term “partition” was favored in the present instance by 
its very broadness. 
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